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PREFACE
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the course of this work.
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SECTION I

INTRODUCTION

For quite some time, there has been interest in the penetration of

semi-infinite targets by long rods and jets. Numerous experimental and

numerical studies of the problem have been carried out over the past four

decades. The numerical studies have now evolved into gigantic hydrocodes

which attempt to account for every detail of the event. These codes are

expensive to run and do not offer much engineering insight into the pene-

tration process. It is for this reason that the one-dimensional, eroding-

rod model of Tate (References I and 2) is both a popular and useful tool for

describing the event. For nearly two decades, Tate's theory has been

regarded as the foundation for simple engineering modeling of the penetra-

tion process.

In this paper, a generalization of the basic equation of motion of

the rod is made which leads to a modification of Tate's theory. The

modified theory accounts for the expansion of the penetrator tip into a

mushroom of diameter greater than that of the original rod, and provides an

accurate treatment of mass transfer from the undeformed segment. Compari-

son with Tate's theory is made when appropriate.
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SECTION II

THEORY

1. GENERAL

The approximate, one-aimensional analysis of the penetration of a

half-space by a long (slender) rod is best explained for the case in which

the penetration is accompanied by consumption of the rod. The other two

cases, impact without penetration and rigid-body penetration, can be con-

sidered as special cases of the more general situation of the penetrator

being consumed as it penetrates.

Figure 1 shows the penetrator, a cylindrical rod of initial length L,

density p, and cross-sectional area A. Let V denote the initial velocity

with which it impacts the semi-infinite target. After some time t has

elapsed, the rod has penetrated the target to some depth z. In the process,

a portion of the rod of length X has been consumed. The remaining portion

of the rod has length L-X, denoted by Z; it is assumed to move as a rigid

body with remaining velocity v. The speed of penetration into the target,

z, is denoted by u. Here the superposed dot indicates derivative with

respect to time.

Figure 2(a) shc.ws the rigid end of the rod at time t. An instant

*i later, at time t + At, a portion of the rod end has been consumed by the

penetration process and the remaining rod end has been decelerated. This

is depicted in Figure 2(b). From these figures a simple, one-dimensional

impulse-momentum equation can be written. Because the internal forces F are

equal and opposite, only the external force P contributes to the impulse.
.'.

As it is opposite to the dlrectio,,s of u and v, its contribution is negative:

-PAt. The total momentum at t + At is pAAXu + pA(L-X-AX)(v Av). At t the

---



= -L-X

9.L-X

Figure 1. Schematic of Rod: (a) Shows Plastic Portion X, and
Undeformed Portion L - X = Z; (b) Shows Penetration
into Taraet to a Death z.
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momentum was pA(L-X)v. Subtracting to obtain the momentum change and

equating that to the impulse gives

-PAt = pA{(L-X)Av-AX(v-u)-AXAv} (1)

Dividing through by At and taking limits as At approaches zero gives

-P = pA{(L-X)v-*X(v-u)} 0la)

as the equation of motion for the rigid end of the rod. From the

definition 9 = L-X, Equation (la) can be recast in the form

-P = pA {'v+(v-u)} (Ib)

Again referring to Figure 2(b), it is assumed that a reasonable approxima-

tion to the external force is given by

P = pA/(l+e) (2)

Here e denotes the engineering strain in the deformed element of the rod

so that A/(1+e), assuming isochoric deformation, is its current cross-

sectional area; and p denotes the interface pressure at the penetrator tip.

Substitution of Equation (2) into Equation (Ib) gives

tv + 1(v-u) - -p/p(1+e) (3)

This is the rod equation of motion.

With reference to Figure 2, during the time interval At the back end

of the remaining penetrator moves a distance vAt while its front end moves

uAt. The consequent change of length At is (u-v)At so that

= -(v-u) (Z)

This Is a purely kinematical relationship among the variables.

To complete the statement of the problem requires the specification of

functional relations for u, p, and e. Suppose, for example, that the

penetration velocity u is some function of the rod speed v, say u=f(v). It

is frequently assumed that the pressure p is a function of penetration

velocity; in this case p is also a function of v: p - p(u) - p(f(v)) = g(v).

5



The strain e can be assumed to depend upon pressure (or stress) p; then it

too is a function of v: e = e(p) = e(g(v)) - h(v). The rod equation of

motion can now be written as

Zv - [v-f(v)]2 = -g(v)/{p[l+h(v)]} (5)

Equation (5) can be solved generally because the variables are separable.

By making the substitution ' = -(dv/dk)[v-f(v)] and rearranging, Equation

(5) becomes

-(dv/d) = [v-f(v)]-g(v)/{p[1+h(v)][v-f(v)]} (6)

Separating variables and integrating from the starting conditions Z = L and

v V leads to

cv d

Wn(/L) -___ dv(7)

IV
Ig(v)[p[1+h(v)][v-f(v)]} -I - [v-f(v)]

This is the general dependence of remaining rod length upon remaining rod

speed.

Several special cases can be derived from the foregoing general

theory. For example, the Tate analysis (References 1 and 2) is obtained by

assuming that (v-u) and e are negligible In Equation (3), and that p is

given by a modified Bernouli equation

p - (1/2) 2pu2 + R = (1/2)p(v-u) 2 + Y (8)

Here p2p denotes target density, and R and Y are the respective strength

factors of target and penetrator. In general these can be quite different

from the static yield strengths of the two materials. Strain rate effects

tend to increase these strengths while thermal softening tends to decrease

them. Equation (8) is subject to the restrictions that: the right hand

equality is invalid when the rod penetrates as a rigid body; both are

. 6
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invalid when there is no penetration. Unsteady flow is entirely neglected

in Equation (8) and at present there is no satisfactory way of estimating

the significance of this omission.

In this paper a more general form of the Tate analysis will be

treated. It is assumed that Equation (8) gives the stagnation point

pressure with sufficient accuracy, but (v-u) and e are retained in Equation

(3). Inasmuch as Equation (8) arises from pseudo-steady-state considera-

tions, it seems commensurate to assume that e is simply constant. This

assumption is made for mathematical convenience and from ignorance. While

it is expected that the appropriate value for e will grow larger in some

manner with V, the details of any such relationship remain to be developed.

However, treating e as some constant in any given impact is in keeping with

the other steady-state assumptions.

Combining Equations (3), (4), and (8) gives the rod deceleration as

either

S[(1+e)(v-u)2 - (1/2)u2u2 - X2c2 ]/£(l+e) (9)

or

= [(1/2+e)(v-u) 2 - c2]/Z(I+e) (9a)

Here X2 denotes the ratio R/Y and c2 the quantity Y/p which has the

dimensions of velocity squared. Equations (4), (8), and (9) or (9a)

comprise a system of three equations in three unknowns: u, v, and Z. In

the process of solving them, however, another equation

z u (10)

should be utilized in order to find the most important element in the

problem, viz., the.penetration depth. The problem now is completely

formulated. The parameters embedded in it are conveniently taken as P
2

(target density/penetrator density), X2 = (target strength/penetrator

7
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strength), c2 = Yip, e = engineering strain in the deformation zone of the

penetrator, and V = the initial speed of impact of the rod. No general

solution beyond Equation (7) is available for the foregoing set of equa-

tions; they must be integrated numerically for particular values of the

parameters.

Before any calculations are attempted, the possibilities mentioned

earlier, failure to penetrate and penetration without rod consumption, must

be considered. Intuitively, the former would be associated with large

values of W , large values of X2 and/or small values of V; and the latter

would correspond to p2 and/or X2 being small.

2. NO PENETRATION

Equation (8) can be used to find u in terms of v, 2 and c

Negative values of u imply no penetration. In this case set u - 0 and p

-% (1/2)pv 2 + Y. Then from Equation (9a)

_ -[(1+e)v2-x2c2]/t(1+e) (11)

From Equation (4) v - -i and - -i'which can be substituted into Equation

(11) to obtain

£i'+ i2 _ X2 c2 /(I+e) (12)

The solution of Equation (12), taking account of the initial conditions

t, = L and , = -V at t - 0, is

Ef/L - [1-V2(1+e)/A2c2]I /2  (13)

where Ef denotes the length of rod remaining after it comes to rest. For

initial velocities large enough that V2(1+e) > X2c2 Equation (13) will not

apply. Instead the rod will be entirely consumed against the face of the

target.

S.
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3. NO ROD DEFORMATION

Values of u larger than v imply rigid body penetration. In this case

set u = v and p - (1/2) 42 pu2 + R. Then from Equation (9)

= -[X2c2+(1/2)U 2u2]/L(1+e) (1I)

Now Equation (4) shows that . = 0 so that t remains constant. Noting that

0 u(du/dz) Equation (14) can be readily integrated to obtain

z - z + [£o 0 1+e)/w 2 ]tn [(2X 2c2 + w2u2)/(2X 2c2 + p2u2 )] (15)

Here, following Tate (Reference 2), uo denotes the rod velocity at which u =

v first occurs and to is the corresponding length. Also, zo denotes the

penetration to this point. The increment of penetration, ze , that occurs in

bringing the rigid rod to rest is obtained by substituting u=O into Equation

(15). Thus, the total penetration depth is given by

Zf = z + [Io(1+e)/t 2]Zn[1 + V2u2/2A2c2] (16)

Note that this result is almost identical to Tate's and has the general form

of the Petry equation (Reference 3) or the DeMarre formula (Reference 4).

For the situation in which rigid body penetration proceeds from initial

impact, uo = V, to = L, and Equation (16) yields

zf - [L(+e)/ ] n[1 2 /2 2c2 ]  (17)

4. PENETRATION ACCOMPANIED BY ROD DEFORMATION

Having disposed of the rigid-body and zero penetration cases, the

penetration-with-consumption case is resumed. The value of u obtained from
Equation (8) depends upon the parameters p2 and X2. When either of these

is unity, the equation is essentially linear; otherwise it is quadratic and

rather more complex. Consider first the condition of equal strengths of

target and rod; here R = Y so that X2 = 1 and Equation (8) yields

u V/(1+) (18)

9



In this situation u is always smaller than v and the two reach zero

simultaneously. There is no rigid-body penetration phase under these

conditions. From Equation (18) (v-u) = pv/(1+p) so that Equation (4)

can be written as
. = -pv/(1+) (19)

Differentiating Equation (19) and substituting into Equation (9a) gives

g.'+aj 2 - b = 0 (20)

where

a = Vl(1/2+e)/(1+)I)(1+e) (21)

and

b = pic 2 /(+1U)(I+e) (22)

By defining 1 = 2, from which d&/di = 2A, Equation (20) can be rewritten

as
(d&Idt) + 2a& - 2b - 0 (23)

This equation is linear and can be simply integrated subject to C(L) -

lj2V2/(1 +1)2.

Two cases develop: first, a-0, which implies e--1/2. In this case

Equation (23) integrates to

,* _ i2 . (p2V2 )/(1+I) 2 - 2bin(L/E) (24)

From Equation (24) it can be seen that there will always exist a non-zero,

unconsumed rod length tf corresponding to . = 0 and given by

t= L exp{-V2V 2/2b(1+j) 21 = L exp{-PV 2/c2 (1+i)1 (25)

For this case in which u Is directly proportional to v, Equation (18),

is also proportional to v, Equation (19). From Equations (18) and (19)

u - -/u so that the penetration depth, given by Equation (10), in this case

becomes

z [t udt =- 1/u J dt - (L-Z)/ (26)

10
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The total depth of penetration, zf, is given by

Zf = (L-if)/v (26a)

where if is given in Equation (25).

The more important case is a A 0. For this case, t2a-1 is an

integrating factor of Equation (20) and the solution is

j {2 - b/a + [42V2 /(1+) 2 - b/a](L/£)2a (27)

If a is negative, then the penetration process will always be complete

before the rod is completely consumed by plastic deformation. The final

undeformed length £f is obtained from the solution of

(if/L)2 a  1 1 - au2V2/b(1+ 1 )2  (28)

The total depth of penetration is given by Equation (26a) with if given in

Equation (28).

For positive values of a, the situation is somewhat more complicated.

If b/a = 2c 2 /(1+2e) > 4
2V2 /(1+P) 2 , then penetration ceases before the rod is

completely consumed by plastic deformation. The final undeformed length is

still given by Equation (28) with the total depth of penetration again given

by Equation (26a).

The only remaining possibility is a>O with b/a = 2c 2 /(1+2e) <

P2V2/(1+P)2. In this case, the rod will be completely consumed by plastic

deformation before penetration ceases. The total penetration depth is then

zf - L/U (29)

according to Equation (26a).

The other case in which Equation (8) is linear in u is for 2 = 1. In

this case

u = (1/2) v + (I-X 2 )c 2 /v (30)
For u to be positive requires a rod velocity such that

(/2)v 2 + (l-X 2 )c 2 > 0 (31)

1i



Condition Equation (31) will always be satisfied for A2 < I until v

decreases to zero. For A2 > 1 there is a critical initial striking speed

[2(X2-1)]11 2 c. For actual initial impact velocities less than this value,

penetration will not occur. For impact speeds greater than this critical

value, penetration-with-consumption will occur and will continue until the

rod is decelerated to [2(X2 -1)] 11 2 c when penetration will cease.

For u to be smaller than v in this case (02 = 1) requires that

(1/2)v 2 - (I-A2)c2 > 0 (32)

Here the inequality will always be satisifed for X2 > 1 but, from the

discussion above, this will include situations of zero penetration. For X2

< 1 there is a critical initial striking speed [2(1-X 2 )] 1/ 2 c below which

rigid body penetration occurs and Equation (17) applies. For initial

striking speeds above this critical value there will be some penetration-

with-consumption until the rod is decelerated to [2(1-A 2)j I /2 c after which

some further rigid body penetration occurs, for which Equation (16) applies.

When p2 l 1 and X2 ; 1 Equation (8) is quadratic in u and has the

solution
u = [v - [42 v2 - 2(1-u 2 )(j-A 2 )c2 11/2 }/(1-Uj2 ) (33)

Whenever v > [2(l-i 2 )(1-A 2 )] 1 / 2 c/j, the root in Equation (33) is real and

the rod penetrates the target. The complexity of this relationship between

u and v precludes the possibility of finding any exact solutions to the

differential equations beyond that given in Equation (7). The system is

thus integrated numerically.

5. LIMIT AT HIGH IMPACT SPEEDS

For v2 , sufficiently large in comparison to c2 , Equation (33) gives the

approximate result

u = v/(I+ ) (34)

12
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which is identical to Equation (18). In this case Equation (19) applies,

and Equations (26) and (26a) follow. Rearranging Equation (26a) gives

IPzf/L = 1 - Zf/L (26b)

At the highest impact velocities the penetrator is completely consumed

(if = 0) and from Equation (26b) it follows that the limit of Uzf/L is unity

as V/c becomes very large. This is obvious from the numerical calculations

shown in the figures.

13
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SECTION III

RESULTS AND DISCUSSION

Figure 3 shows some calculated results for cases favorable to penetra-

tion. In these cases, by comparison to the target the penetrator is

stronger (A2 = 1/3) and more dense (42 = 0.64). This figure shows the

effect of one element introduced by the present theory, viz., the mushroom

strain at the projectile end. As can be seen from Equations (9) and (9a)

this strain, which is negative, directly increases the projectile decelera-

tion. The obvious physical interpretation is that the incoming projectile

momentum is resisted by a larger target area. For zero strain the results

of the present analysis are nearly identical to those calculated from Tate's

analysis. However, as the impact end strain is assigned increasingly larger

magnitudes, the penetration depth is greatly reduced. It must be concluded

that this mushroom strain plays a highly significant role in the penetration

process.

Figure 3 shows that for strains smaller in magnitude than 0.5 the

penetration at first increases with impact velocity, reaches a maximum, and

then decreases. This is observed in the calculations based upon Tate's

theory also, and has been discussed at length in his 1969 paper (Reference

2). Based upon the present analysis, it seems likely that when the proper

dependence ot e upon V is discovered, penetration depth will be predicted to

increase monotonically with impact speed.

Figure 4 shows some calculated results for cases in which the penetra-

tor -And target are of identical materials. They have equal strengths (2 =

1) and densities (w' - 1). This figure shows the effect of the second

major element introduced by the present theory, viz., the relative velocity

term in the equation of motion. This is most easily seen in Equation (9a).

41
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Here the term -c2 that occurs in Tate's equation is reduced by the term

(1/2 + e)(v - u)2 in the present theory. For e = 0, Figure 4 shows that

substantially larger penetrations are calculated from the present theory

than from the Tate theory over the range of impact velocities bridging

between rigid body penetration and the limiting case at high velocities.

This effect is not so strong as the mushroom strain effect, however, and the
J

figure shows a reverse to smaller penetration depths at two non-zero

strains.

Figure 5 shows some calculated results for cases unfavorable to

penetration. In these cases, by comparison to the target the penetrator is

weaker (A2 = 3) and less dense (W2 = 1.44). This figure shows that for e =

0, calculations based upon the present theory are virtually identical to

those based on Tate's theory. But there remains a highly significant effect

due to impact face strain.

1 7
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SECTION IV

CONCLUSIONS

The present analysis provides a one-dimensional penetration theory that

is more accurate than its antecedent.

Two new effects are introduced in the present theory: the change of

momentum of material crossing the plastic interface, and the strain discon-

tinuity at this interface. Of these two, the latter has the greater impact

on calculated results.

The present analysis is capable of describing impact penetration data

without recourse to abnormally large strength parameters for the target and

penetrator materials.
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